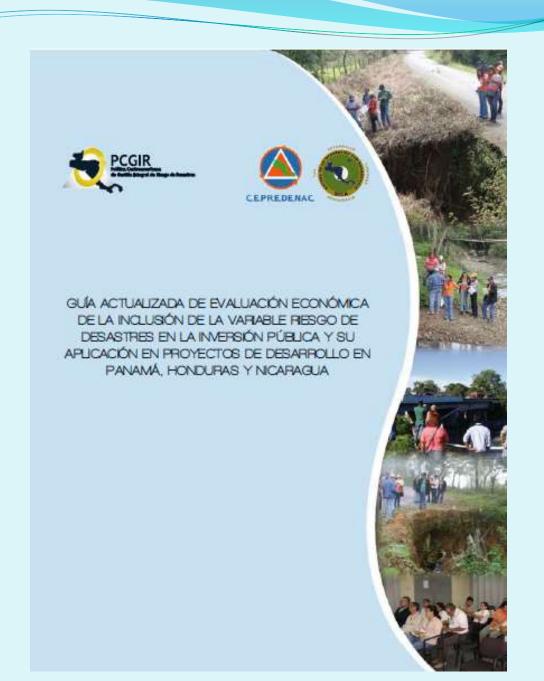
PROYECTO DE REHABILITACIÓN DE LA CARRETERA RÍO SERENO – PASO CANOA INCLUYENDO VALORACIÓN ECONÓMICA DE RIESGO A DESASTRES Y ADAPTACIÓN AL CAMBIO CLIMÁTICO CHIRIQUÍ, PANAMÁ

Taller Internacional sobre Inversión Pública con enfoque de reducción de riesgo a desastre y adaptación al cambio climático Ministerio de Hacienda y Crédito Público Banco Interamericano de Desarrollo (BID)

Comisión Económica para América Latina y el Caribe (CEPAL)

Sede subregional en México

Managua, Nicaragua, 12 y 13 de agosto de 2015


Esquema

- Antecedentes
- Descripción del proyecto
- Diagnóstico: problema a resolver
- Área de influencia
- Evaluación de vulnerabilidad, emplazamiento y balance de riesgos
- Evaluación económica financiera
- Breves reflexiones finales

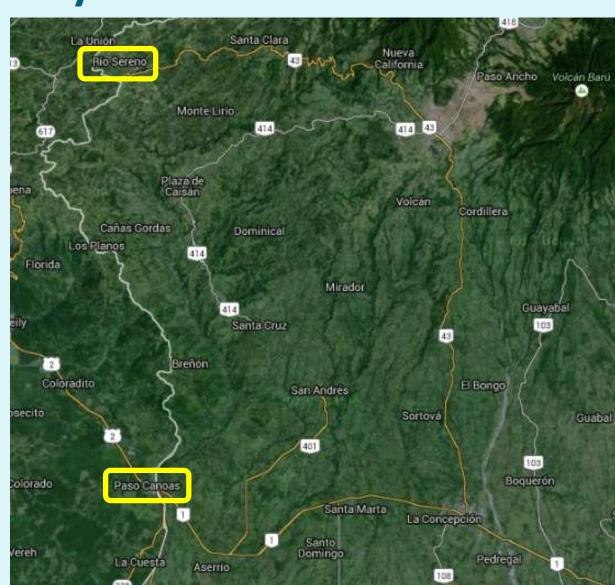
ANTECEDENTES

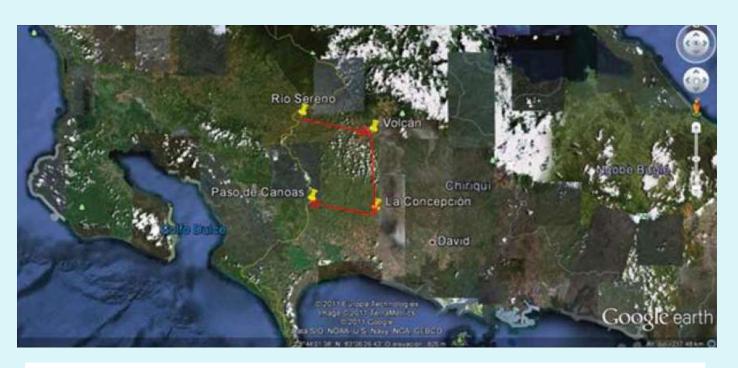
Antecedentes

- Trabajo realizado para el Centro de Coordinación para la Prevención de los Desastres Naturales en América Central (CEPREDENAC) en 2011.
- Guía actualizada de evaluación económica de la inclusión de la variable riesgo de desastres en la inversión pública y su aplicación en proyectos de desarrollo en Panamá, Honduras y Nicaragua.
- Elaborado junto con Marco Antonio Giraldo.
- Web CEPREDENAC: Apoyo a la gestión documental.
- http://www.infogir.org/jdownloads/Apoyo%20a%20la%20Gestion%20 Documental/gua_actualizada_final.pdf

DESCRIPCIÓN DEL PROYECTO

- Nombre del Proyecto
 - Rehabilitación de la Carretera Río Sereno Paso Canoa en la Provincia de Chiriquí, Panamá.
 - La rehabilitación consiste en la pavimentación mediante asfaltado a dos carriles de un camino con superficie de rodadura pavimentada en tratamiento superficial que une los poblados **Río Sereno y Paso Canoa**.
 - El proyecto pretende <u>rehabilitar la carretera</u>, con anchos de circulación adecuados, hombros definidos, manejo de aguas de escorrentía superficial, estabilización de laderas, mejoramiento de puentes y/o reemplazo de los mismos.


Ubicación del Proyecto


- Ubicado al norte de la Provincia de Chiriquí, límite fronterizo con Costa Rica.
- Río Sereno Paso Canoa en la Provincia de Chiriquí, Panamá.

Ubicación del Proyecto

- Inicia en el Distrito de Renacimiento en el Corregimiento de Río Sereno, pasando por el Corregimiento de Cañas Gordas y el Corregimiento de Breñón, terminando en el Corregimiento de El Progreso en el Distrito de Barú.
- Ruta alternativa: Río
 Sereno Volcán –
 Concepción Paso
 Canoa.

Vía Alterna

Distancia de la Carretera Río Sereno – Paso Canoa y Vía Alterna

Carretera	Kilómetros
Río Sereno - Paso Canoa	59.50
Río Sereno – Volcán – Concepción – Paso Canoa	98.35
Diferencia	38.85

DIAGNÓSTICO: PROBLEMA A RESOLVER

Puentes en mal estado

- La vía atraviesa lechos de ríos y quebradas a través de <u>puentes</u> en mal estado
- Socavación y erosión de bases de puentes.
- Sobrecarga por el tipo de vehículos que transitan por la vía.

Pérdida de trazo de la vía

- Fisuras longitudinales
- Erosión que conllevan la desestabilización del terreno, llegando a la pérdida del perfil transversal de la vía.
- Desintegración del <u>pavimento</u>, falta de hombros.

Estado de la carretera

- Ancho de calzada inadecuado.
- Mala condición de pavimento.
- Falta de obras para el manejo de <u>aguas</u> superficiales
- Deficiencia en el funcionamiento de obras existentes
- Destrucción <u>carpeta</u> asfáltica
- Falta de <u>señalización</u> horizontal y vertical

ÁREA DE INFLUENCIA

- La población en la zona de influencia del proyecto era de **21,406 habitantes** (2008)
 - Corregimiento de Progreso en el <u>Distrito de Barú</u> con el <u>64%</u>.
 - Corregimiento de Río Sereno, Breñón y Cañas Gordas en el <u>Distrito de Renacimiento con el 36% restante</u>.
- La población <u>escolar</u> asciende a 1,865 en primaria y 258 en preescolar, los cuales tienen programas de asistencia nutricional (2008).
- La <u>pobreza</u> alcanza al 50,5% en el corregimiento de Progreso en el Distrito de Barú, y al 52,5%, 61,4% y 70,3% en Río Sereno, Breñón y Cañas Gordas, respectivamente.

- La agricultura es una de las principales actividades productivas, siendo el <u>arroz</u>, <u>sandía</u>, <u>papaya</u> y <u>pixbae</u> (pejibaye) los cultivos más importantes en el Corregimiento de Progreso, Distrito de Barú; y el <u>pepino</u>, <u>frijol de bejuco y tomate industrial</u> en los corregimiento de Río Sereno, Cañas Gordas y Breñón en el Distrito de Renacimiento.
- La producción de <u>carne de ganado vacuno y porcino</u> es más importante en los corregimientos de Río Sereno, Breñón y Cañas Gordas que en el corregimiento de Progreso.

EVALUACIÓN DE VULNERABILIDAD, EMPLAZAMIENTO Y BALANCE DE RIESGOS

Evaluación de vulnerabilidad, emplazamiento y balance de riesgos

- Evaluación de emplazamiento
 - Bioclimático
 - Geología
 - Ecosistema
 - Medio construido
 - Interacción (contaminación)
 - Institucional social
- Evaluación de vulnerabilidad:
 - Materiales de construcción
 - Diseño
 - Tecnología de construcción
- Balance de riesgos

Metodología: evaluación de emplazamiento

PROYECTO:														
U	BICACIÓN	V:												
				COMPO)N	ENTE BI	0	CLIMA	TI	CO				
E	CONFORT HIGROTERMICO	VIENTO)	PRECIPITACI	ON	RUIDOS		CALIDAD DEL AIRE			P	F	EXPXF	PxF
1											3			
2											2			
3 1 1 VALOR TOTAL - Suma EvPvE/Suma PvE -														
VALOR TOTAL= Suma ExPxF/Suma PxF =														
				COM	P(ONENTE	G	EOLOG	JIA					•
E	SISMICIDAD	EROSION	COMPONENTE GEOLOGIA SION DESLIZAMIENTO VULCANISMO RANGOS DE PENDIENTE CALIDAD SUELO P F								F	EXPXF	PxF	
1											3			
2											2			
3											1			
V	ALOR TOTA	L= Suma	ExP	xF/Suma P	Y xF	=								
				COM	PO	NENTE I	EC	OSISTE	EM	A				
E	SUELOS AGRICOLAS	HIDROLO SUPERFIC		HIDROLO JBTERRANEA		LAGOS		AREAS RÁGILES	SEI	DIMENTACION	P	F	EXPXF	PxF
1										3				
2									_		2			
3											1			
\overline{V}	ALOR TOTA	L= Suma	ExP	xF/Suma l	PxF	7 =								

Metodología

		CO	MPONENT	TE MEDI	O CONSTI	RUIDO							
E	USO DEL SUELO	ACCESIBILIDAD	ACCESO A SERVICIOS	AREAS COMUNALES			P	F	EXPXF	PxF			
1							3						
2							2						
3							1						
VA	VALOR TOTAL= Suma ExPxF/Suma PxF =												
		COMPONE	NTE DE IN	TERACC	ION (CON	TAMINA	CIÓ	N)	-				
E	DESECHO SÓLIDO Y LIQUIDO	INDUSTRIA CONTAMINANTES	LINEAS ALTA TENSION	PELIGRO EXPLOSION INCENDIO	RECOSECCIÓN DESECHOS		Р	F	EXPXF	PxF			
1							3						
2							2						
3	3 1												
VA	VALOR TOTAL= Suma ExPxF/Suma PxF =												

Metodología

		(COMPONENT	E INSTI	FUCIONAL	SOCIAL				
E	CONFLICTOS TERRITOR.	SEGURIDAD CIUDADANA	MARCO JURIDICO				Р	F	EXPXF	PxF
1							3			
2							2			
3							1			
VA	LOR TOTAL=									
			RESUME	N DE LA	EVALUAC	ION				
CO	OMPONEN'	ΓES							EVALUACIO	N
BIC	OCLIMATICO									
GE	OLOGÍA									
EC	OSISTEMA									
ME	DIO CONST	RUIDO								
IN	TERACCION	(CONTAMINAC	IÓN)							
INS	STITUCIONA									

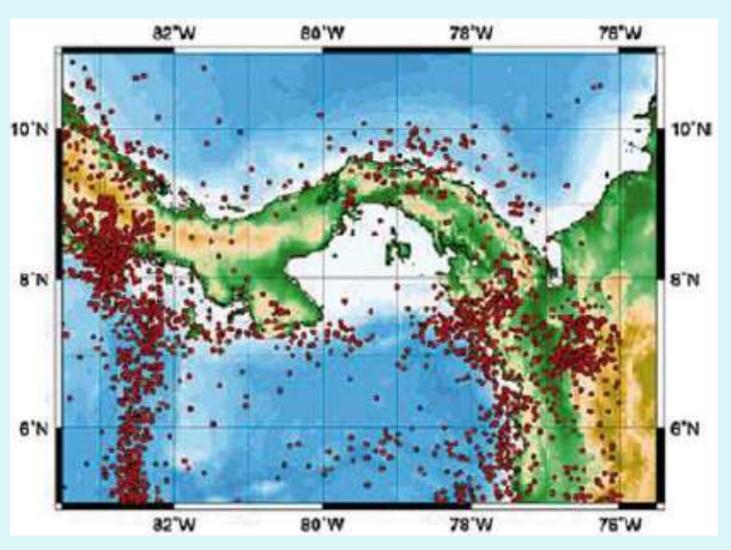
Significado evaluaciones

1,0 - 1,5

- Sitio muy vulnerable
- No elegible para el desarrollo de inversiones

1,6 – 2,0

- Sitio susceptible de afectación
- Búsqueda de una mejor alternativa de localización, o inversión con medidas de reducción de riesgos


2,1-2,5

- Sitio con bajo componente de riesgo a desastres
- Sitio elegible para inversiones

2,6 - 3,0

- Sitio no es vulnerable
- Sitio elegible para el desarrollo del proyecto

Amenazas sísmicas

Estación 1 Km 00+11,7 Tramo vial – Quebrada del Norte

Evaluación de emplazamiento.

Estación 1 Km 00+11,7 Tramo vial – Quebrada del Norte

1,975 =
susceptible de
afectación a
riesgo de
desastres

\vdash	COMPONENTE GEOLOGÍA											
Н			CO	VIPC	JNENTE G	RANGOS	<u> </u>	_	_			
Ε	SISMICIDAD	EROSIÓN	DESLIZAMIENTO	VL	JLCANISMO	DE PENDIENTE	CALIDAD SUELO	P	F	EXPXF	PxF	
1	X	X	X			X	X	3	5	15	15	
2								2	0	0	0	
3					X			1	1	3	1	
VA	LOR TOTAL=	ExPxF/PxF	= 18/16= 1,1.				_			18	16	
Щ			CON	1POI	NENTE EC		1	_	_			
Ε	SUELOS AGRÍCOLAS	HIDROLO SUPERFIC			LAGOS	ÁREAS FRÁGILES FRÁGILES	SEDIMENTACIÓN	P	F	EXPXF	PxF	
1		X					X	3	2	6	6	
2								2	0	0	0	
3	X		X		X	X		1	4	12	4	
VA	LOR TOTAL=	ExPxF/PxF	= 18/10= <i>1,8</i>							18	10	
			COMPON	ENT	E INSTITU	CIONAL S	OCIAL					
Ε	CONFLICTOS TERRITOR.	SEGURIDA CIUDADAN	MARCO JUR				P	F	EXPXF	PxF		
1								3	0	0	0	
2								2	0	0	0	
3	X	X	X					1	3	9	3	
VA	LOR TOTAL=	ExPxF/PxF	= 9/3= 3,0							9	3	
			RESU	MEN	V DE LA EV	/ALUACIÓ	N					
CO	OMPONEN	TES								EVALUACIO	N	
BI	OCLIMÁTICO											
GE	OLOGÍA									1,125		
EC	OSISTEMA									1,8		
MEDIO CONSTRUIDO												
IN	TERACCIÓN	(CONTAMI	NACIÓN)									
IN	INSTITUCIONAL SOCIAL 3,0											
			PRO	MED	Ю					1,975		

Estación 2 Km 00 + 23,6 Puente Quebrada Nueva Delhi 1

Evaluación de emplazamiento.

Estación 2 Km 00 + 23,6 Puente Quebrada Nueva Delhi 1

2,1= poco vulnerable

	,												
			COI	MPONENTE (GEOLOGÍA								
Ε	SISMICIDAD	EROSIÓN	DESLIZAMIENTO	VULCANISMO	RANGOS DE PENDIENTE	CALIDAD SUELO	P	F	EXPXF	PxF			
1	X	X				X	3	3	9	9			
2							2	0	0	0			
3			X	X	X		1	3	9	3			
VALOR TOTAL= EXPXF/PXF= 1,50 18 12													
	COMPONENTE ECOSISTEMA												
SUELOS HIDROLO HIDROLO LAGOS FRÁGILES SEDIMENTACIÓN P F EXPXF PXF AGRÍCOLAS SUPERFIC SUBTERRÁNEA LAGOS FRÁGILES TO SUPERFIC													
1 X X 3 2 6 6													
2 0 0 0													
3 X X X X 1 4 12 4													
VA	LOR TOTAL= E	ExPxF/PxF	= 1,80						18	10			
			COMPON	ENTE INSTIT	JCIONAL S	OCIAL							
Ε	CONFLICTOS TERRITOR.	SEGURID CIUDADA	IUDÍDI				P	F	EXPXF	PxF			
L							3	0	0	0			
2							2	0	0	0			
3	X	X	X				1	3	9	3			
/Al	OR TOTAL= E	xPxF/PxF	= 9/3= <i>3,0</i>						9	3			
			RESU	MEN DE LA E	VALUACIÓ:	N							
co	MPONENT	ES							EVALUACIÓ	N			
BIO	CLIMÁTICO												
GE(DLOGÍA								1,5				
COSISTEMA													
MEDIO CONSTRUIDO													
NTERACCIÓN (CONTAMINACIÓN)													
NSTITUCIONAL SOCIAL 3,0													
			PRO	MEDIO					2,1				

Estación 3 Km 00 + 27,6 Puente Quebrada Nueva Delhi 2

Evaluación de emplazamiento

Estación 3 Km 00 + 27,6 Puente Quebrada Nueva Delhi 2

2,1 = poco vulnerable

			CO	MPONENTE (GEOLOGÍA							
E	SISMICIDAD	EROSIÓN	DESLIZAMIENTO	VULCANISMO	RANGOS DE PENDIENTE	CALIDAD SUELO	P	F	EXPXF	PxF		
1	X	X				X	3	3	9	9		
2							2	0	0	0		
3			X	X	X		1	3	9	3		
VA	LOR TOTAL=	ExPxF/PxF	= 1,50						18	12		
COMPONENTE ECOSISTEMA												
E SUELOS HIDROLO SUPERFIC SUBTERRÁNEA LAGOS FRÁGILES FRÁGILES SEDIMENTACIÓN P F EXPXF PXF												
1		X				X	3	2	6	6		
2							2	0	0	0		
3	X		X	X	X		1	4	12	4		
VA	LOR TOTAL=	ExPxF/PxF	= 1,80						18	10		
E	CONFLICTOS TERRITOR.	SEGURID	IVIARO				P	F	EXPXF	PxF		
1	TERRITOR.	CIODADA	INA				3	0	0	0		
2							2	0	0	0		
3	X	X	X				1	3	9	3		
VA	LOR TOTAL=	ExPxF/PxF	= 9/3= <i>3,0</i>						9	3		
	VALOR TOTAL= ExPxF/PxF= 9/3= 3,0 9 3 RESUMEN DE LA EVALUACIÓN											
COMPONENTES												
—	CLIMÁTICO											
GE	OLOGÍA								1,5			
	OSISTEMA								1,8			
MEDIO CONSTRUIDO												
INT	INTERACCIÓN (CONTAMINACIÓN)											

PROMEDIO

INSTITUCIONAL SOCIAL

3,0

2,1

Estación 4 Km 00 + 31,9 Tramo vial.

Evaluación de emplazamiento

Estación 4 Km 00 + 31,9 Tramo vial

1,95 =
susceptible de
afectación a
riesgo de
desastres

	COMPONENTE GEOLOGÍA												
E	SISMICIDAD	EROSIÓN	DESLIZA	AMIENTO	VULC	CANISMO	RANGOS DE PENDIENTE	CALIDAD SUELO	P		F	EXPXF	PxF
1	Χ	Х		X			Х	X	3		5	15	15
2									2	(0	0	0
3						X			1		1	3	1
VA	LOR TOTAL=	ExPxF/PxF	= 18/									18	16
COMPONENTE ECOSISTEMA													
E	SUELOS AGRÍCOLAS	HIDROLO		DROLO ERRÁNEA	L	AGOS	ÁREAS FRÁGILES	SEDIMENTACIÓN	P		F	EXPXF	PxF
1		X			+		FRÁGILES	Х	3	+	2	6	6
2 X 2 1 4 2													
3 X X X 1 3 9 3													-
VALOR TOTAL= ExPxF/PxF= 1,73 19 11													
	COMPONENTE INSTITUCIONAL SOCIAL												
E CONFLICTOS SEGURIDAD MARCO JURÍDICO P F											E	EXPXF	PxF
1									3	0		0	0
2									2	0		0	0
3	X	X		X					1	3		9	3
VA	LOR TOTAL=	ExPxF/PxF	= 9/3	= 3,0							9		3
				RESU	MEN	DE LA E	VALUACIÓ	N					
СС	MPONEN	TES									EVA	ALUACIÓN	1
BIC	OCLIMÁTICO												
GE	OLOGÍA										1	1,125	
EC	OSISTEMA											1,73	
MEDIO CONSTRUIDO													
INTERACCIÓN (CONTAMINACIÓN)													
INS	STITUCIONAL	SOCIAL							\perp			3,0	
L				PRO	MEDI	0						1,95	

Estación 5 Km 00 + 34, Puente Quebrada Limón

Evaluación de emplazamiento

Estación 5 Km 00 + 34,5 Puente Quebrada Limón:

2,05 = poco vulnerable

			co	MPONENTE	GEOLOGIA					
Ε	SISMICIDAD	EROSIÓN	DESLIZAMIENTO	VULCANISMO	RANGOS DE PENDIENTE	CALIDAD SUELO	Р	F	EXPXF	PaF
1	X	X				X	3	3	9	9
2							2	0	0	0
3			X	X	X		1	3	9	3
VA	LOR TOTAL=	ExPxF/PxF	= 18/12= 1,50						18	12
			CON	APONENTE E	COSISTEMA	4	V - 1			CV.
E	SUELOS AGRÍCOLAS	HIDROLO SUPERFIC	HIDROLO SUBTERRÁNEA	LAGOS	ÁREAS FRÁGILES FRÁGILES	SEDIMENTACIÓN	p	F	EXPXF	PXF
1		X				X	3.	2	6	6
2			X		X	7,7.2.2.2	2	2	8	4
3	X		0	X			1	2	6	2
VA	LOR TOTAL=	ExPxF/PxF	= 20/12 = 1,66	5					20	12

COMPONENTE INSTITUCIONAL SOCIAL

Ε	CONFLICTOS TERRITOR.	SEGURIDAD CIUDADANA	MARCO JURÍDICO		Р	F	EXPXF	PxF
1					3	0	0	0
2					2	0	0	0
3	X	3	9	3				
VALO	9	3						

RESUMEN DE LA EVALUACIÓN

COMPONENTES	EVALUACIÓN
BIOCLIMATICO	
GEOLOGÍA	1,50
ECOSISTEMA	1,66
MEDIO CONSTRUIDO	
INTERACCIÓN (CONTAMINACIÓN)	
INSTITUCIONAL SOCIAL	3,0
PROMEDIO	2,05

Estación 6 Km 00 + 34,8 Quebrada de vuelta

Evaluación de emplazamiento

Estación 6 Km oo + 34,8 Quebrada de vuelta

2,1 = poco vulnerable

				CC	MPOI	VENTE (GEOLOGÍA					
Ε	SISMICIDAD	EROSIÓN	DESLIZAN	MIENTO	VULCA	NISMO	RANGOS DE PENDIENTE	CALIDAD SUELO	P	F	EXPXF	PxF
1	Χ	Χ						Χ	3	3	9	9
2									2	0	0	0
3			X		,	X	X		1	3	9	3
VA	LOR TOTAL= I	ExPxF/PxF	= 1,50								18	12
			T	COI	MPON	ENTE E	COSISTEM	A				
E SUELOS HIDROLO HIDROLO LAGOS FRÁGILES SEDIMENTACIÓN P F EXPXF PXF 1												PxF
1		X						Χ	3	2	6	6
2 0 0 0												
3 X X X X 1 4 12 4												4
VA	LOR TOTAL= I	ExPxF/PxF	= 1,80								18	10
			CO	MPON	IENTE	INSTIT	UCIONALS	SOCIAL				
Ε	CONFLICTOS TERRITOR.	SEGURII CIUDADA		MAF JURÍE					Р	F	EXPXF	PxF
1									3	0	0	0
2									2	0	0	0
3	X	Χ		λ	(1	3	9	3
VA	LOR TOTAL=	ExPxF/Pxf	= 9/3=	= 3,0							9	3
				RESL	JMEN	DE LA E	VALUACIO	ÓΝ				
CC	OMPONENT	TES									EVALUACIÓI	,
BIC	OCLIMATICO											
GE	OLOGÍA										1,5	
EC	OSISTEMA										1,8	
M	MEDIO CONSTRUIDO											
IN	TERACCION (CONTAMI	NACIÓ	N)								
IN:	INSTITUCIONAL SOCIAL 3,0											
				PRO	OMEDIO	0					2,1	

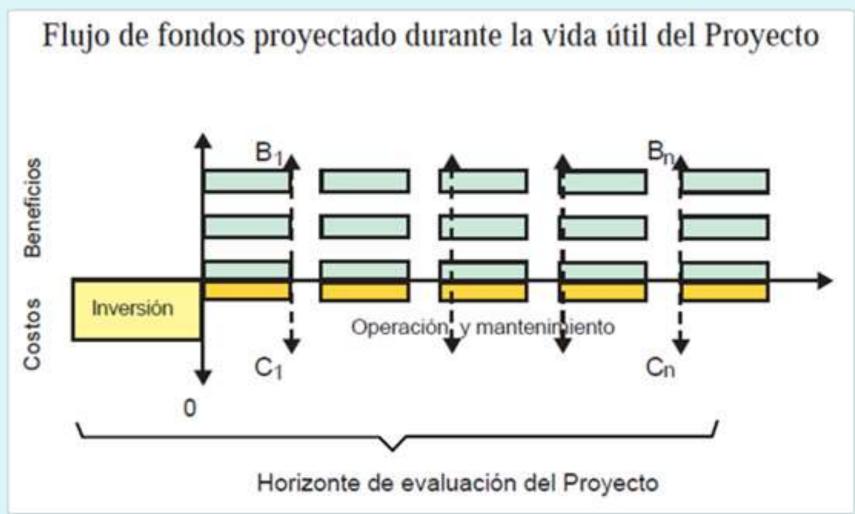
			R	ELAC	IÓN E	SCALA	/PE	so	
No.	COMPONENTES	SUBCOMPONENTES	E P E		Ε	Р	Ε	Р	Σ
			3	1	2	2	1	3	
		Disponibilidad de materiales			X	X			
	Materiales de	Renovabilidad de fuentes					X	X	
	Construcción	Agresividad del proceso			X	X			
		Calidad y durabilidad del material	X	X					
1		Protección ambiental	X	X					
		Facilidad de sustitución o reparación			X	X			
		FRECUENCIA	2	2		3		1	
		EXPXF	(6 1		L2		3	21
	PXF		2		6			3	11
		VALOR TOTAL		EXP	XF / F	PXF =		1,9	90

			R	ELAC	IÓN E	SCALA	/PE	/PESO		
No.	COMPONENTES	SUBCOMPONENTES	Ε	Р	Ε	P	Ε	Р	Σ	
				1	2	2	1	3		
		Cultura local	X	X						
	Diseño	Estabilidad					X	X		
		Funcionabilidad								
		Confort operacional								
2		Eliminación desechos			X	X				
		Adaptación/territorio		X						
		FRECUENCIA	2	2		1		1		
		EXPXF		6		4		3		
		PXF		2		2		3	7	
		VALOR TOTAL	EXPXF / PXF =				1,8			

			R	ELAC	ION E	SCALA	/PE	/PESO		
No.	COMPONENTES	SUBCOMPONENTES	Ε	P	Ε	P	Ε	P	Σ	
			3	1	2	2	1	3		
		Fuerza de trabajo					X	X		
	Tecnología de	Equipamiento					X	X		
	Construcción	Generación/disposición desechos			X	X				
		Control Ejecución			X	X				
3		Externalidades			X	X				
		FRECUENCIA	(0		3	2			
		EXPXF		0		12		6	18	
		PXF	(0		6		6	12	
	VALOR TOTAL				XF / I	PXF =	KF = 1,			

		ANÁLISIS					
No.	EVALUACIONES	1.0-1.5	1.6- 2.0	2.1- 2.5	2.6- 3.0		
1	MATERIALES DE CONSTRUCCIÓN		1,90				
2	DISEÑO		1,85				
3	TECNOLOGÍA DE CONSTRUCCIÓN	1,50					
	PROMEDIO	1,75					

Balance de riesgos


		ANÁLISIS					
No.	EVALUACIONES	1.0-1.5	1.6-	2.1-	2.6-		
		1.0-1.5	2.0	2.5	3.0		
1	EVALUACIÓN DE EMPLAZAMIENTO		2,0				
2	ANÁLISIS DE VULNERABILIDAD		1,75				
BA		1,8	7				

Medidas estructurales y no estructurales

- Realizar estudios geotécnicos para identificar fallas
- Identificar medidas adecuadas para evacuación de aguas superficiales y drenaje tanto transversal como longitudinal
- Establecer un nuevo trazado de la vía
- Construir obras complementarias para proteger taludes y reconstrucción sostenible de gaviones.
- Remover masas de tierra en secciones con pendientes de taludes superiores a 30 grados de inclinación.
- Construir obras para reforzar bases de puentes (pilotaje).
- Asegurar el cumplimiento de medidas de sismo resistencia para la zona de los puentes.
- Incorporar las especificaciones para la construcción de carreteras en zonas de amenaza sísmica alta.

EVALUACIÓN ECONÓMICA – FINANCIERA

Escenario I: No se considera la ocurrencia de desastres

Estimación del valor de la producción de servicios de la carretera

- Método indirecto: servicio alternativo.
- ¿cuánto le costaría al tráfico vehicular trasladarse desde Río Sereno hacia Paso Canoa por una vía alternativa?
- Valor económico por el servicio de la carretera.

Indicador de precio

Costo por kilómetro estimado para tráfico en carretera con las características de la vía en estudio por tipo de vehículo: sedan, pick up, bus, camión liviano y camión pesado

		Costo de operación de vehículos (US \$/vehículo por 98.35 kms de la vía alterna) (Precio)								
Período	Sedan, Vans, 4 X 4	Pick-up	Bus	Camión liviano	Camión pesado					
2	30.94	36.45	57.30	41.97	48.75					
3	31.71	37.37	58.73	43.02	49.97					
4	32.51	38.30	60.20	44.09	51.21					
5	33.32	39.26	61.70	45.19	52.49					
6	34.15	40.24	63.25	46.32	53.81					
7	35.01	41.24	64.83	47.48	55.15					
8	35.88	42.28	66.45	48.67	56.53					
9	36.78	43.33	68.11	49.89	57.94					
10	37.70	44.42	69.81	51.13	59.39					
11	38.64	45.53	71.56	52.41	60.88					
12	39.61	46.66	73.35	53.72	62.40					
13	40.60	47.83	75.18	55.07	63.96					
14	41.61	49.03	77.06	56.44	65.56					
15	42.65	50.25	78.99	57.85	67.20					
16	43.72	51.51	80.96	59.30	68.88					

Indicador de la producción

Tráfico anual de la carretera por tipo de vehículo medidos por el MOP por tipo de vehículo.

	Tráfico	Tráfico normal proyectado (Volumen anual)								
Período	Sedan, Vans, 4 X 4	Pick-up	Bus	Camión liviano	Camión pesado	Todos				
2	74,284	92,874	28,476	12,346	10,187	218,167				
3	76,289	95,382	30,327	12,741	10,513	225,252				
4	78,349	97,957	32,298	13,149	10,850	232,603				
5	80,465	100,602	34,397	13,570	11,197	240,230				
6	82,637	103,318	36,633	14,004	11,555	248,147				
7	84,868	106,107	39,014	14,452	11,925	256,367				
8	87,160	108,972	41,550	14,915	12,307	264,904				
9	89,513	111,915	44,251	15,392	12,700	273,771				
10	91,930	114,936	47,127	15,885	13,107	282,985				
11	94,412	118,040	50,190	16,393	13,526	292,561				
12	96,961	121,227	53,453	16,918	13,959	302,517				
13	99,579	124,500	56,927	17,459	14,406	312,871				
14	102,268	127,861	60,627	18,018	14,867	323,641				
15	105,029	131,314	64,568	18,594	15,342	334,847				
16	107,865	134,859	68,765	19,189	15,833	346,511				

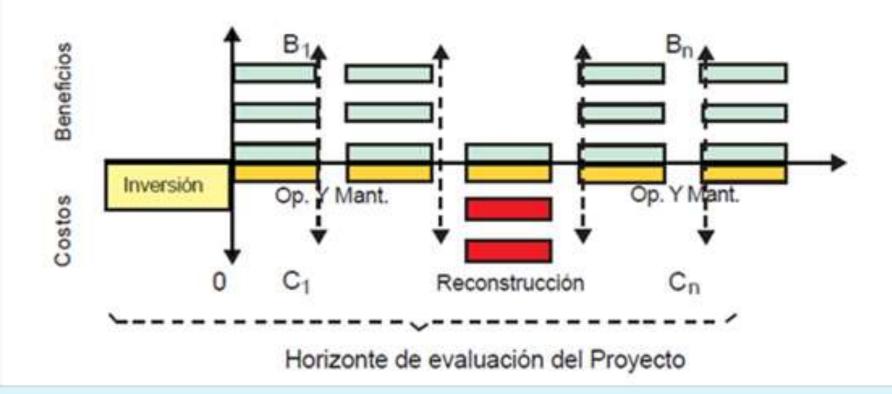
Valor económico

Multiplicación del indicador de volumen por el de precio.

Valor Económico del Flujo Vehicular en vía alterna (millones de US \$)

Período	Sedan, Vans, 4 X 4	Pick-up	Bus	Camión liviano	Camión pesado	Todos
2	2.30	3.39	1.63	0.52	0.50	8.33
3	2.42	3.56	1.78	0.55	0.53	8.84
4	2.55	3.75	1.94	0.58	0.56	9.38
5	2.68	3.95	2.12	0.61	0.59	9.95
6	2.82	4.16	2.32	0.65	0.62	10.57
7	2.97	4.38	2.53	0.69	0.66	11.22
8	3.13	4.61	2.76	0.73	0.70	11.92
9	3.29	4.85	3.01	0.77	0.74	12.66
10	3.47	5.11	3.29	0.81	0.78	13.45
11	3.65	5.37	3.59	0.86	0.82	14.30
12	3.84	5.66	3.92	0.91	0.87	15.20
13	4.04	5.95	4.28	0.96	0.92	16.16
14	4.26	6.27	4.67	1.02	0.97	17.19
15	4.48	6.60	5.10	1.08	1.03	18.29
16	4.72	6.95	5.57	1.14	1.09	19.46

Escenario I


- Inversión inicial de USD 8,2 millones a ejecutar en 26 meses.
- Tasa social de descuento de 6,7% (promedio de las emisiones de títulos del gobierno central para plazos superiores a 10 años).
- Vida útil del proyecto: 15 años.
- Costos de reparación y mantenimiento con base en una anualización de los montos estándar de mantenimiento por kilómetro en períodos consecutivos de 5 años, adicionados a los costos de lechada de la carretera con una frecuencia de 7 años.

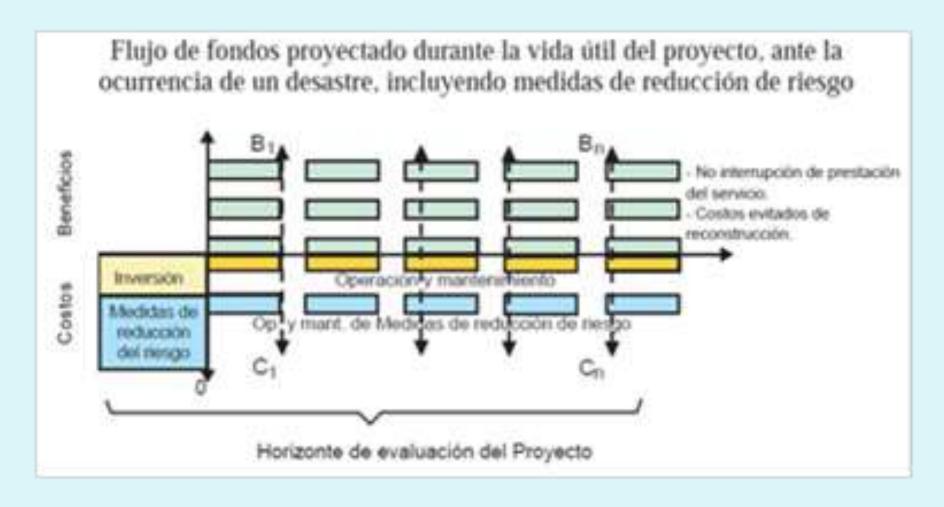
Rehabilitación Carretera Río Sereno - Paso Canoa: Valor Actual de los Flujos de Inversión Inicial, Ingresos y Beneficios, y Costos de Mantenimiento y Reparación del Proyecto (Millones US \$) Escenario 1 sin desastre ni medidas

Tasa social	l de descuento:	6.7%						
300000000000000000000000000000000000000		Inversión Inicial		Ingresos y Beneficios		Costos de Mantenimiento y Reparación		
Período	Valor factor de descuento:	Valor Nominal	Valor Actual	Valor Nominal	Valor Actual	Valor Nominal	Valor Actual	
(1)	(2)	(3)	(4) = (2) * (3)	(5)	(6) = (2) * (5)	(7)	(8) = (2) * (7)	
0 1	1.0000 0.9372	4.10 4.10	4.10 3.84					
2	0.8784		000000000	8.33	7.32	0.48	0.42	
3	0.8232		000000000	8.84	7.28	0.49	0.41	
4	0.7715			9.38	7.24	0.50	0.39	
5	0.7231			9.95	7.20	0.52	0.37	
6	0.6777			10.57	7.16	0.53	0.36	
7	0.6351			11.22	7.13	0.54	0.35	
8	0.5952			11.92	7.09	3.89	2.32	
9	0.5579			12.66	7.06	0.57	0.32	
10	0.5228			13.45	7.03	0.59	0.31	
11	0.4900			14.30	7.01	0.60	0.29	
12	0.4592			15.20	6.98	0.62	0.28	
13	0.4304			16.16	6.96	0.63	0.27	
14	0.4034		2000000	17.19	6.93	0.65	0.26	
15	0.3780			18.29	6.91	4.62	1.75	
16	0.3543	0.20	7.04	19.46	6.89	0.68	0.24	
Sumatoria Memorandu	m Itams:	8.20	7.94	196.90	106.18	15.91	8.33	
			7.94					
	Valor Actual Inversión Inicial							
	Ingresos y Benefi		106.18					
Valor Actual	Costos Mantenim	niento y Repa	r 8.33					
Valor Actual	Neto Proyecto Es	cenario 1	89.90					

Escenario II. Considerando el impacto de amenaza de desastres

Flujo de fondos proyectado durante la vida útil del Proyecto, ante la ocurrencia de un desastre y sin incluir medidas de reducción de riesgo

Escenario II


- Inversión inicial, tasa social de descuento y vida útil del proyecto, idéntico que el escenario I.
- Con base en registros del MEF se identificó la frecuencia de eventos extremos sobre los puentes con una frecuencia de 4 años.
- Eventos menos extremos sobre los tramos de carretera con una frecuencia de 2 años.
- Se reducen los ingresos y beneficios
- Se incorporaron los costos de reconstrucción proporcionados por MOP y MEF.

Rehabilitación Carretera Río Sereno - Paso Canoa: Valor Actual de los Flujos de Inversión Inicial, Ingresos y Beneficios, y Costos de Mantenimiento, Reparación y Reconstrucción del Proyecto (Millones US \$)

	•			
Escenario	7 CII	<i>1 docact</i>	re ni i	medidac
Loccitatio	Z 311	ı ucsust	<i>,</i>	IICUIUUS

Tasa socia	l de descuento:	6.7%						
		Inversión Inicial		Ingresos	y Beneficios	Costos de Mantenimiento, Reparación y		
Período	Valor factor de descuento:	Valor Nominal	Valor Actual	Valor Nominal	Valor Actual	Valor Nominal	Valor Actual	
(1)	(2)	(3)	(4) = (2) * (3)	(5)	(6) = (2) * (5)	(7)	(8) = (2) * (7)	
0	1.0000	4.10	4.10					
1	0.9372	4.10	3.84					
2	0.8784			8.33	7.32	0.48	0.42	
3	0.8232			8.84	7.28	1.00	0.82	
4	0.7715			9.38	7.24	0.50	0.39	
5	0.7231			4.98	3.60	1.68	1.21	
6	0.6777			10.57	7.16	0.53	0.36	
7	0.6351			11.22	7.13	1.10	0.70	
8	0.5952			11.92	7.09	3.89	2.32	
9	0.5579			6.33	3.53	1.85	1.03	
10	0.5228			13.45	7.03	0.59	0.31	
11	0.4900			14.30	7.01	1.22	0.60	
12	0.4592			15.20	6.98	0.62	0.28	
13	0.4304			8.08	3.48	2.04	0.88	
14	0.4034			17.19	6.93	0.65	0.26	
15	0.3780			18.29	6.91	5.30	2.01	
16	0.3543			19.46	6.89	0.68	0.24	
Sumatoria		8.20	7.94	177.51	95.57	22.12	11.82	
Memorandu								
Valor Actual Inversión Inicial		7.94						
Valor Actual	Ingresos y Benefic	cios	95.57					
Valor Actual	Costos Mantenim	iiento y Rep	11.82					
Valor Actual	Neto Proyecto Es	cenario 1	75.81					

Escenario III. Considerando impacto de amenaza de desastres y medidas de reducción de riesgo

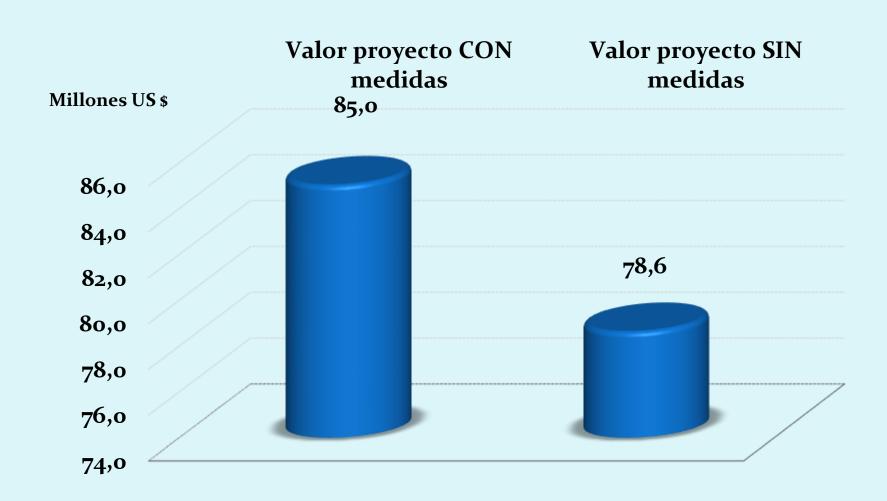
Escenario III

- Tasa social de descuento y vida útil del proyecto, idéntico que el escenario I y II.
- Medidas para blindar los tramos de carretera (puntos E-1 y E-4) y puentes deteriorados (puntos E-2, E-3, E-5 y E-6).
- La Inversión inicial tomando medidas de reducción de riesgos implicó estudios específicos con ingenieros especialistas de la DPI del MEF y del MOP. La inversión inicial aumenta como resultado de la inclusión de las medidas.

Rehabilitación Carretera Río Sereno - Paso Canoa: Valor Actual de los Flujos de Inversión Inicial Blindada, Ingresos y Beneficios, y Costos de Mantenimiento y Reparación del Proyecto (Millones US \$)

	•		•	
Escenario	∠ cin	MOCMETRO	nı	mpaiaac
LSCEIIGIIO	<i>3</i> 3111	uesusiie	,,,	IIIEUIUUS

Tasa social	de descuento:	6.7%				Cost	ns de
		Inversi	ón Inicial	Ingresos y Beneficios		Costos de Mantenimiento,	
Período	Valor factor	Valor	Valor	Valor	Valor	Valor	Valor
	de descuento:	Nominal	Actual	Nominal	Actual	Nominal	Actual
(1)	(2)	(3)	(4) = (2) * (3)	(5)	(6) = (2) * (5)	(7)	(8) = (2) * (7)
0	1.0000	5.33	5.33				
1	0.9372	5.33	5.00				
2	0.8784		0000000	8.33	7.32	0.62	0.55
3	0.8232		000000	8.84	7.28	0.64	0.53
4	0.7715		000	9.38	7.24	0.66	0.51
5	0.7231		000000	9.95	7.20	0.67	0.49
6	0.6777		000	10.57	7.16	0.69	0.47
7	0.6351		000000	11.22	7.13	0.71	0.45
8	0.5952			11.92	7.09	5.06	3.01
9	0.5579		00000	12.66	7.06	0.74	0.41
10	0.5228		000	13.45	7.03	0.76	0.40
11	0.4900		000000	14.30	7.01	0.78	0.38
12	0.4592		000	15.20	6.98	0.80	0.37
13	0.4304		00000	16.16	6.96	0.82	0.35
14	0.4034		000	17.19	6.93	0.84	0.34
15	0.3780		000000	18.29	6.91	6.01	2.27
16	0.3543			19.46	6.89	0.88	0.31
Sumatoria		10.66	10.33	196.90	106.18	20.69	10.83
Memorandum Items:							
Valor Actual Inversión Inicial			10.33				
Valor Actual Ingresos y Beneficios			106.18				
Valor Actual Costos Mantenimiento y Repara			ra 10.83				
Valor Actual	Valor Actual Neto Proyecto Escenario 1						


Incertidumbre

- En los escenarios planteados, implícitamente se está considerando la frecuencia e intensidad de ocurrencia de los eventos extremos.
- Habrá que considerar una probabilidad para la ocurrencia de los desastres y otra para la no ocurrencia de los desastres.
- Si se incluyen medidas de reducción de riesgo sea que ocurran o no los desastres ¿cuál es el valor esperado del proyecto?
- R/ el VAN del proyecto con medidas de reducción de riesgos
- Si NO se incluyen medidas de reducción de riesgo sea que ocurran o no los desastres ¿cuál es el valor esperado del proyecto?
- R/ el VAN del proyecto sin medidas por la probabilidad de no ocurrencia de desastres más el VAN del proyecto sin medidas por la probabilidad de ocurrencia de desastres

Estimación del valor del proyecto y decisiones

Valor Actual	# Fila	Escenario 1: sin desastres ni medidas de reducción de riesgo	Escenario 2: con desastres y sin medidas de reducción de riesgo	Escenario 3: con desastre y medidas de reducción de riesgo				
		(a)	(b)	(c)				
De Inversión	(1)	7.94	7.94	10.33				
De Ingresos	(2)	106.18	95.57	106.18				
De Costos	(3)	8.33	11.82	10.83				
Neto	(4)=(2)-[(1)+(3)]	89.90	75.81	85.02				
Memorandum Items								
Probabilidad		Valor del		·				
ocurrencia	0.8	proyecto sin	78.6					
desastre: Probabilidad de no	1	medidas Valor del						
ocurrencia de desastre	0.2	proyecto con medidas	85.0					

Valor del proyecto

Breves reflexiones finales

- La evaluación de emplazamiento, además de servir para identificar las áreas vulnerables de los proyectos de inversión, facilitan la determinación de las medidas estructurales y no estructurales para reducir los riesgos de desastres.
- La valoración económica de los proyectos de inversión pública brindan un criterio técnico financiero respecto de las medidas de reducción de riesgo, que debe respaldar el criterio de experto.
- La hipótesis nula es la optimizar la inclusión de medidas de reducción de riesgo versus el escenario de reconstrucción del riesgo, pero debe demostrarse en cada caso.